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Percolation disorder in viscous and nonviscous flow through porous media
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The complete set of Navier-Stokes equations has been numerically solved for two-dimensional random
pore networks subjected to site percolation disorder. Both viscous and nonviscous flow regimes have
been investigated to emphasize the effect of structure and phenomenology on deviation from the classical
Darcy law of permeability. It is shown that near the percolation threshold, different scaling laws apply
for distinct flow conditions. At this transition region, discrepancies in the critical exponents reflect the
influence of the convective momentum transfer mechanism on the overall behavior of the disordered

physical system.

PACS number(s): 47.55.Mh

I. INTRODUCTION

Porous media are very common in nature and
represent important materials with several applications in
engineering, physics, chemistry, and biology. Technolog-
ical processes involving porous materials include petrole-
um exploration and production, catalysis, spread of ha-
zardous wastes, chromatography, etc. For single-phase
fluid flow, the permeability of a porous medium k is a
fundamental index being generally expressed in terms of
Darcy’s law

y=—k 2P (1)
u L

where V is the average fluid velocity (filter velocity), u is
the viscosity of the fluid, L is the length of the sample in
the macroscopic flow direction, and AP is the pressure
drop applied across the system. Equation (1) is a phe-
nomenological model which does not account explicitly
for the structural details of the porous medium at the mi-
croscopic and mesoscopic levels. As a consequence, the
permeability coefficient does not exclusively depend on
the porosity but also on the connectivity of the pore
space and the tortuous aspect of the flow field. Further-
more, it is well known that Darcy’s law with a constant
permeability coefficient for a particular porous medium
only applies at viscous flow conditions. This corresponds
to low values of the Reynolds number, as defined by

pd,V
u(l—e)’

Re= 2)
where d,, is the average particle size, p is the fluid density,
and ¢ is the porosity of the medium. Several attempts
have been made to predict fluid permeability by means of
empirical relationships [1], semianalytical techniques
[2-5], and well-known cross-property relations [6-10],
especially between the permeability and electrical con-
ductivity (formation factor) of the porous medium.
Direct computational simulation based on previous
knowledge of the pore space morphology can be regarded
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as a very promising methodology [11-13]. For instance,
recent study by Martys, Torquato, and Bentz [13] has
been devoted to the calculation of viscous flow permeabil-
ity for different classes of random porous media which
might closely resemble real materials. They were able to
demonstrate that a simple scaling ansatz can be used to
obtain universal permeability curves for random packings
of nonoverlapping or overlapping spheres.

At high Reynolds numbers, however, convective trans-
port becomes relevant and turbulence can play a decisive
role in affecting the overall momentum transfer in the in-
terstitial void volume. In this situation, the permeability
concept can still be adopted to quantify the resistance to
Sow of a given porous medium for different physical con-
ditions. Generally speaking, deviations from Darcy’s law
become gradually more significant at increasing Reynolds
values where the above mentioned effects are noticeable.
Results from numerical solutions of the Navier-Stokes
equations for various simple channel shapes also indicate
that the extent of these deviations might be strongly
dependent on the pore geometry [1]. A controversial
point refers to the physical interpretation of the break-
down of Darcy’s law. It has been argued that the effect
of inertial forces on the flow (convection) is the single
mechanism responsible for the transition between the
viscous regime of validity of Darcy’s law and the remain-
ing variable permeability zone at high Reynolds numbers
[1]. Accordingly, the incidence of turbulence in a porous
medium will only occur at much higher Reynolds values
than those in the range of incipient nonlinearity.

In the present study, the main purpose is to evaluate
the effect of convection in the overall flow behavior of
percolationlike porous structures. The picture of site per-
colation disorder in a two-dimensional square lattice is
adopted here as a conceptual framework for the pore
space morphology. Although artificial, this is a con-
venient geometrical model because it presents very in-
teresting and well established features which can be close-
ly related with properties of real pore structures. We
show that outside the range of validity of Darcy’s law
and at porosities approaching the percolation threshold
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topology (e—¢,.), different scaling relations shall apply
for different values of the Reynolds number. The depen-
dence of the critical permeability exponent on the fluid
flow conditions will then be substantiated in terms of a
detailed analysis and visualization of several computa-
tional experiments.

II. MODEL FORMULATION

The detailed topology of a real porous network is ex-
tremely difficult to model. As a consequence of the re-
sulting description for the pore space connectivity, the
calculation of transport properties in such complex struc-
tures usually requires an enormous computational effort.
In contrast to previous studies, the approach here is to
emphasize the phenomenological features of the model
and capture its general behavior. This can be accom-
plished by adopting a regular square lattice as a
simplified topological representation of the system. In
this case, the picture of site percolation disorder
represents the natural language to study the porosity
influence on the fluid flow characteristics of the system
[14,15]. Simulations have been performed with 50X 50
networks randomly generated to produce several different
prescribed porosities. Periodic boundary conditions are
used to reduce the finite-size effect on the transverse
direction of the lattice. Figure 1 shows a typical realiza-
tion of the porous medium.

FIG. 1. A typical realization of the porous medium (¢=0.8).

Apart from the pore space which is the main feature
under investigation, a header and a recovery region are
included to minimize end effects on the calculated flow
field. The results of our simulations show that such dis-
turbances are particularly significant in systems of low
porosity. The length of these ancillary zones also seems
to be an important factor influencing the stability of the
numerical method. In the case where only a limited
number of fluid pathways through the structure is ob-
served, a situation which is typical of low porosity reali-
zations, strong jets of fluid may emerge from the porous
medium into the exit zone. A sufficiently large length is
thus necessary to damp the jet, otherwise the gradientless
boundary condition imposed at the exit will exert an ad-
verse influence on the velocity flow field. In this study,
the exit zone was set to be 2.5 times larger than the depth
of the packing. This proved to be enough to ensure a
negligible rate of change for the velocity vector at the
outlet position.

At this stage, a brief account is given of the mathemat-
ical model utilized to describe the detailed fluid mechan-
ics in the interstitial void space. An adequate mathemati-
cal representation should not only reveal the velocity and
pressure inside the network, but also how these variables
are influenced by the physical properties of the fluid and
structure of the porous media. With these considerations
in mind, the most suitable approach for modeling such
problems is to consider the fluid as a continuum [16].
Differential balance equations for mass and momentum in
an Eulerian frame of reference form the basis of the phe-
nomenological model. In the case of a Newtonian fluid,
the mathematical equations are the well-known Navier-
Stokes expressions coupled with the continuity equation
[17]. For isothermal and steady state flow with constant
physical properties, the equations describing the local
flow in the pore space of the two-dimensional percolation
geometry (Fig. 1) can be written as

Jou Jou_ dp . % Bu
P dx ay ox # Ix? ayl ’
v o [ awv]
P 1% ax dy dy # ax? |’
du , dv
L+ V=p.
dx dy

The independent variables x and y describe the spatial
position in the pore space whereas the dependent vari-
ables u, v, and p are the components of the local velocity
vector and pressure. The two necessary physical proper-
ties are the fluid density p and the viscosity u.

The terms on the left hand side represent the inertial
forces, while those on the right describe the shear
stresses. At low Reynolds numbers, where the inertial
terms are very small in comparison with the viscous
forces, their contribution can be eliminated to give the
well-known linear Stokes equations.

At the solid-fluid interface surrounding the solid cells,
the nonslip boundary condition is used so that the local
velocity of the fluid at this position is zero. As a conse-
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quence of the periodic boundaries in the transverse direc-
tion, fluid is free to leave the domain through one of the
vertical edges but must reenter at the same vertical posi-
tion and in the same direction on the opposite side. At
the inlet, a prescribed inflow velocity is used. At the exit,
the rate of change of velocity in the ngrmal direction to
the boundary is assumed to be zero (gradientless bound-
ary condition).

For the complex geometry considered here, the control
volume finite-difference technique is adequate to find an
approximate solution for the mathematical model. In
this method, the region in Fig. 1 is divided into a number
of nonoverlapping quadrilateral elements of equal size.
The size of the elements is the key parameter for obtain-
ing a sufficiently accurate numerical solution. Obviously,
a numerical scheme containing many elements of small
size should be able to capture more details of the flow.
However, a very refined numerical grid is usually prohibi-
tive from the computational point of view. The parame-
ter n refers to the number of fluid cell subdivisions uti-
lized in the finite-difference scheme for numerical discret-
ization of Egs. (3). In the present study, grid element
lengths with a quarter of the solid cell size (n =4) have
been adopted in all simulations. For the calculation of
the overall pressure drop in the system, this finite grid
proved to generate satisfactory results when compared
with a numerical scheme of small resolution (n =2). Fig-
ure 2 shows a close-up view of part of the utilized discret-
ization grid in a typical porous structure.
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FIG. 2. Close-up view of the discretization grid utilized in a
typical porous structure (n =4).
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FIG. 3. Plot of the velocity flow field through a porous medi-
um at low Reynolds number (¢ =0.8, Re=0.01).

FIG. 4. Plot of the velocity flow field through a porous medi-
um at high Reynolds number (¢ =0.8, Re=100).
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For each quadrilateral element in the numerical grid,
the finite-difference analog of the mass and momentum
balance are developed by considering the integral form of
the governing equations. This gives rise to a set of cou-
pled nonlinear algebraic equations which are pseudol-
inearized and solved sequentially using the SIMPLER al-
gorithm [18]. Convergence is achieved when the sum of
the momentum and mass residuals in each element falls
below a specified value.

Finally, the overall pressure drop across the sample
(AP) is calculated from the area-averaged pressures at
the entrance and exit positions of the percolating porous
network.

III. RESULTS AND DISCUSSION

Figure 3 shows the velocity flow field through a porous
medium for a given porosity, e =0.8, and Reynolds num-
ber, Re=0.01. This low Reynolds value has been chosen
to ensure that the inertial terms have a negligible
influence on the general aspect of the flow field and global
pressure drop. Even though the flow pathways form a
highly connected backbone structure at this high porosity
value, preferential channels can be clearly detected in
such viscous flow conditions. As shown in Fig. 4, the
flow patterns generated at a higher Reynolds number,
e.g., Re=100, but with otherwise similar conditions, are
significantly different from the previous case. In this situ-
ation, the degree of channeling is less intense and the
velocity flow distribution is more homogeneous. Bottle-
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FIG. 5. Close-up section of Fig. 3.
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necks can still be observed, but because the effective fluid
accessibility is enhanced by the contribution of inertial
forces, the relative maximum velocity at these regions is
lower than for purely viscous conditions. The discrepan-
cy between flow patterns for a given porous structure at
very different Reynolds numbers is an interesting feature
of the simulations which could not be directly interpreted
from permeability data only. From an essentially geome-
trical argument, well distributed flow at high Reynolds
number would naturally suggest a reduced permeability
coefficient, due to the less tortuous characteristic of the
flow field. However, the resistance to flow is not ex-
clusively influenced by the tortuosity of the porous medi-
um. Although the surface area is the same in both cases,
the energy dissipation in the bulk fluid phase and at the
solid-fluid interface is much larger in high Reynolds
number conditions than in the situation of viscous flow.
Since lower permeability coefficients have been computed
for high values of the Reynolds number, this effect is cer-
tainly predominant over the geometrical one. These con-
siderations are reinforced by close-up sections of Figs. 3
and 4 which are displayed in Figs. 5 and 6, respectively.
Figure 6 also confirms the occurrence of some recircula-
tion zones where the fluid experiences rapid changes in
direction. This fact indicates that convection prevails
over the viscous mechanism of momentum transfer in the
flow at high Reynolds values.

As shown in Fig. 7, the complicated topology of the
porous structure at a low porosity value creates very tor-
tuous pathways for fluid flow in nonviscous conditions.
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FIG. 6. Close-up section of Fig. 4.
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FIG. 7. Plot of the velocity flow field through a porous medi-
um with low porosity at high Reynolds number (£=0.65,
Re=100).
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FIG. 8. Close-up section of Fig. 7.
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FIG. 9. Dependence of the permeability coefficient on the
Reynolds number for two different values of the porosity.

In addition, several dead-end regions are present and at-
tached to the percolation backbone. At high Reynolds
numbers, the strong channeling effect due to the geome-
trical configuration of the system is accompanied by
several recirculation zones. Furthermore, the close-up of
the velocity vector field in Fig. 8 also shows that the high
tortuosity of the medium can even induce the occurrence
of backward fluid movement with relation to the main
direction of the flow.

Figure 9 shows that for fixed porosity values above the
percolation threshold, the permeability coefficient is ini-
tially constant (Darcy’s law) and then gradually decreases
with the increase of the Reynolds number, after a certain
transition point. This behavior has already been ex-
plained in terms of the greater energy dissipation of the
system in the presence of inertial forces, causing a higher
resistance to flow at large Reynolds values. As a conse-
quence, lower permeability coefficients are to be expected
at high Reynolds numbers where convection is
significant. Figure 10 shows the dependence of the per-
meability on the porosity of the medium for two different
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FIG. 10. Dependence of the permeability coefficient on
porosity of the network for two different Reynolds values.
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FIG. 11. Logarithmic plot of k vs (e—¢.) for two different
Reynolds values.

Reynolds values. A distinctive feature from these plots is
that the two quantities seem to disappear with different
critical exponents, though at the same threshold porosity
which is a purely structural property of the system. As a
consequence, when the porosity approaches the threshold
value (e—¢,, €,=0.592746 for the square lattice [19])
one can conjecture a power law relationship for permea-
bility

ko< (e—e ), “@

which involves the following functionality between the
critical exponent and Reynolds number:

f=f(Re). (5)

This nonuniversal behavior is illustrated in Fig. 11 where
the result of fitting low porosity data (0.6 <& <0.75) with
Eq. (4) is shown in a logarithmic plot. As previously
mentioned, only small pore networks could be utilized in
the simulations for reasons of computational feasibility.
Furthermore, because of the numerical complexity of the
problem, simulations for a given porosity value have been
restricted to a few realizations of the disordered struc-
ture. In these circumstances, the obtained critical ex-
ponents surely do not represent accurate percolation pa-
rameters, especially due to finite-size effects. Neverthe-
less, it does not compromise the qualitative aspect of the
results which basically aim to emphasize the fact that dis-
tinct scaling laws should represent dissimilar flow re-
gimes near the percolation threshold. The large
discrepancy between critical exponents at different Rey-
nolds numbers clearly illustrates that the interplay be-
tween structure and phenomenology must be carefully ex-
amined in the analysis of flow permeability through
porous materials. Even at viscous flow conditions, the
analogy between permeability and electrical conductivity
only applies if details of the pore morphology are not tak-
en into consideration. This should be the case when, for
example, an active fluid cell in our simulations is replaced
by a single node of negligible volume connecting four
half-channels in a typical site percolation system. It
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FIG. 12. Logarithmic plot of k vs (e—¢.) for three different
values of the grid discretization parameter n.

should then be possible to demonstrate that the tradition-
al conductivity problem in percolation theory only be-
comes equivalent to the viscous flow permeability in pore
networks when a very coarse numerical grid is adopted in
the simulations. An attempt to do so is displayed in Fig.
12, where critical exponents have been calculated for per-
meability data at low porosity for three different levels of
grid refinement. As expected, convergence on the per-
meability coefficient for different porosities can be
achieved by increasing the parameter n, the number of
grid cell subdivisions in the numerical solution. The in-
teresting aspect of these simulations, however, is the fact
that the critical exponent of the less refined grid, f =1.47
for n =1, appears to be the closest one to the reported
value of the electrical conductivity exponent in two di-
mensions, f=1.3 [19]. This is compatible with our pre-
vious justification and somehow demonstrates the con-
sistency of the methodology. The results in Fig. 12 can
also be interpreted by observing that our idealized disor-
dered system can display features of both discrete (coarse
numerical grid, small n) and continuum (fine numerical
grid, large n) percolation models. As a consequence,
simulations with refined numerical grids would tend to
produce larger critical exponents than their coarse grid
counterparts, in perfect agreement with previous studies
on transport phenomena in continuum percolation sys-
tems [20,21].

IV. CONCLUSIONS

The numerical simulations performed in this study
have illustrated the role played by convection affecting
the flow patterns in porous structures subjected to per-
colation disorder. It was demonstrated that the scaling
law governing the percolation transition in fluid flow is
intrinsically dependent on the particular aspects of the
momentum transport phenomena taking place at the pore
space level. In other words, above the range of validity of
Darcy’s law, one has to consider a nonuniversal behavior
for the critical exponent relating flow permeability
coefficients and porosities near the threshold zone. As a
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consequence, for a given dimension, such an exponent
must be a function of Reynolds number to correlate data
where inertial contributions to fluid flow are relevant.
From a detailed inspection of the resulting velocity
fields, it was possible to compare and analyze different
features of the flow under viscous and nonviscous condi-
tions. At high Reynolds numbers, when the convective
mechanism is significant, a distinctive characteristic of
the fluid flow is the occurrence of recirculation zones in
dead-end spaces connected to the main stream flow paths.
Backward flow could also be detected in pore networks
generated at a prescribed low porosity. This was ex-
plained in terms of the highly tortuous conformation of
the percolation backbone through which most of the fluid

flow is observed. Further simulations with large lattices
and more refined numerical grids are necessary to pro-
duce more accurate and quantitative evidence that these
factors represent essential elements of the fluid mechanics
in disordered porous structures. The investigation of
rheological and turbulence effects on the fluid flow in per-
colationlike porous media are also part of our current
research project.
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